3.2.84 \(\int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [184]

3.2.84.1 Optimal result
3.2.84.2 Mathematica [C] (verified)
3.2.84.3 Rubi [A] (verified)
3.2.84.4 Maple [A] (verified)
3.2.84.5 Fricas [C] (verification not implemented)
3.2.84.6 Sympy [F]
3.2.84.7 Maxima [F]
3.2.84.8 Giac [F]
3.2.84.9 Mupad [F(-1)]

3.2.84.1 Optimal result

Integrand size = 23, antiderivative size = 161 \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {28 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {52 a^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^3 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {52 a^3 \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

output
2/7*a^3*sin(d*x+c)/d/sec(d*x+c)^(5/2)+6/5*a^3*sin(d*x+c)/d/sec(d*x+c)^(3/2 
)+52/21*a^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)+28/5*a^3*(cos(1/2*d*x+1/2*c)^2)^ 
(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^ 
(1/2)*sec(d*x+c)^(1/2)/d+52/21*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d* 
x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c) 
^(1/2)/d
 
3.2.84.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.45 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.91 \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a^3 \left (-2352 i+\frac {4704 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}-1040 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+1070 \sin (c+d x)+252 \sin (2 (c+d x))+30 \sin (3 (c+d x))\right )}{420 d \sqrt {\sec (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(7/2),x]
 
output
(a^3*(-2352*I + ((4704*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + 
 d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] - (1040*I)*Sqrt[1 + E^((2*I)*(c + d 
*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] 
+ 1070*Sin[c + d*x] + 252*Sin[2*(c + d*x)] + 30*Sin[3*(c + d*x)]))/(420*d* 
Sqrt[Sec[c + d*x]])
 
3.2.84.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \int \left (\frac {3 a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sec ^{\frac {5}{2}}(c+d x)}+\frac {a^3}{\sec ^{\frac {7}{2}}(c+d x)}+\frac {a^3}{\sqrt {\sec (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {6 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {52 a^3 \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {52 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {28 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\)

input
Int[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(7/2),x]
 
output
(28*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/( 
5*d) + (52*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d 
*x]])/(21*d) + (2*a^3*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (6*a^3*Sin[ 
c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (52*a^3*Sin[c + d*x])/(21*d*Sqrt[Sec[ 
c + d*x]])
 

3.2.84.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 
3.2.84.4 Maple [A] (verified)

Time = 25.94 (sec) , antiderivative size = 272, normalized size of antiderivative = 1.69

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-432 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+602 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-208 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+65 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(272\)
parts \(-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {6 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(723\)

input
int((a+a*sec(d*x+c))^3/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
-4/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(120*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-432*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x 
+1/2*c)+602*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-208*cos(1/2*d*x+1/2*c) 
*sin(1/2*d*x+1/2*c)^2+65*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1) 
^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1 
/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.84.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.06 \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (15 \, a^{3} \cos \left (d x + c\right )^{3} + 63 \, a^{3} \cos \left (d x + c\right )^{2} + 130 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{105 \, d} \]

input
integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(7/2),x, algorithm="fricas")
 
output
-2/105*(65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 147*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 147*I*sqrt(2)*a^3*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15* 
a^3*cos(d*x + c)^3 + 63*a^3*cos(d*x + c)^2 + 130*a^3*cos(d*x + c))*sin(d*x 
 + c)/sqrt(cos(d*x + c)))/d
 
3.2.84.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=a^{3} \left (\int \frac {1}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**3/sec(d*x+c)**(7/2),x)
 
output
a**3*(Integral(sec(c + d*x)**(-7/2), x) + Integral(3/sec(c + d*x)**(5/2), 
x) + Integral(3/sec(c + d*x)**(3/2), x) + Integral(1/sqrt(sec(c + d*x)), x 
))
 
3.2.84.7 Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(7/2),x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(7/2), x)
 
3.2.84.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(7/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(7/2), x)
 
3.2.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

input
int((a + a/cos(c + d*x))^3/(1/cos(c + d*x))^(7/2),x)
 
output
int((a + a/cos(c + d*x))^3/(1/cos(c + d*x))^(7/2), x)